III B.Tech - II Semester – Regular Examinations – JUNE 2023

METROLOGY AND MEASUREMENTS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	List static and dynamic characteristics of an	L2	CO1	7 M		
		instrument. Which two characteristics are					
		important according to your opinion and					
		why?					
	b)	Select the measurement scheme for	L3	CO1	7 M		
		weighing machine system. Draw the block					
		diagram with functional elements in it.					
	OR						
2	a)	Enumerate the concept of interchangeability	L2	CO1	7 M		
		and selective assembly. Recommend one					
		suitable example for these and explain them.					
	b)	Calculate all the relevant dimensions of hole	L3	CO1	7 M		
		and shaft for a fit $\Phi 35H_7/f_{8.}$ Dimension					
		35 mm falls in the step of 30-50 mm. The					
		fundamental deviation for f shaft is					
		$-5.5D^{0.41}$ and i = 0.45 $\sqrt[3]{D}$ +0.001D (in					
		microns), IT7=16i and IT8=25i.					

		UNIT-II				
3	a)	Discuss the purpose of the profile projector.	L3	CO2	7 M	
		Draw the neat sketch and explain its				
		working principle.				
	b)	Build the number of slip gauges for the	L3	CO2	7 M	
		measurement of the dimension 27.482mm				
		using M87 set. Use two protector slip				
		gauges of 2.0 mm.				
		Set M 87 (special set)				
		Range (mm) Steps (mm) No. of blocks				
		1.001-1.009 0.001 9 1.01-1.49 0.01 49				
		0.5-9.5 0.5 19				
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		OR				
4	a)	Design the general purpose GO and NO-GO	L3	CO2	7 M	
		plug gauge for inspecting a hole of $\emptyset 22D_{8}$.				
		Use the following data:				
		Fundamental deviation for hole $D = 16^{0.44}$				
		and IT8=25i.				
		$i=0.45 \sqrt[3]{D}+0.001D$ (in microns).				
	b)	List types of mechanical comparators.	L3	CO2	7 M	
		Illustrate any one mechanical comparator				
		and state its advantages and disadvantages.				
UNIT-III						
5	a)	How do you measure the effective diameter	L3	CO3	7 M	
		of screw thread? Derive an expression for				
		the best wire size to measure effective				
		diameter of a thread.				
L	I	1		1		

	1-)	Drow and auntain Dartingan assurtantar	12	CO^{2}	ግኣፋ
	b)	Draw and explain Parkinson gear tester with	L3	CO3	7 M
		a neat sketch. Write two applications of the			
		same.			
		OR			
6	a)	List out the possible errors that can occur in	L3	CO3	7 M
		screw thread. Suggest suitable remedy to			
		eliminate them.			
	b)	Enumerate the methods of measurement of	L3	CO3	7 M
		gear tooth thickness. Which method is better			
		than others and why? Explain the same with			
		a neat sketch.			
				<u> </u>	
		UNIT-IV			
7	a)	Describe the working principle of the	L2	CO4	7 M
		Talysurf surface roughness tester with a neat			
		diagram.			
	b)	Calculate CLA and RMS roughness values	L3	CO4	7 M
		for the following data:			
		Sampling length: 20 mm,			
		peaks (µm): 40, 42, 40, 41, 42			
		valleys (µm): 25, 22, 22, 24, 23			
		OR			
8	a)	List the instruments used for flat surface	L2	CO4	7 M
	,	measurements. Explain the working			
		principle of Auto-collimator with a neat			
		sketch.			
	b)	Discuss the working of Tomilson surface	L2	CO4	7 M
		meter for measurement of Surface			, <u>,</u> ,
		Roughness using neat sketch.			
		Roughness using near sketch.			

UNIT-V						
9	a)	List instruments used for the measurement	L2	CO5	7 M	
		of speed and flow. Explain any two in detail with suitable applications.				
	b)	List various instruments used for the	L3	CO5	7 M	
		measurement of temperature. Explain the working principle of thermocouple with a				
		neat sketch. State any two alloys used for				
		thermocouples and their temperature ranges.				
	OR					
10	a)	Define gauge factor. How strain gauges can	L2	CO5	7 M	
		be used for the measurement of compressive				
		and tensile stresses in case of cantilever				
		beam with load at one end.				
	b)	Discuss the working principle of LVDT	L3	CO5	7 M	
		with a neat sketch and recommend two				
		practical applications.				